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Vascular aging plays an important role in the mortality of the elderly, but vascular aging 
can be dependent on other factors such as diseases. Various diseases such as Alzheimer, 
diabetes, thalassemia, and other diseases affect the mechanisms of vascular aging. It will 
harm the recovery process of these patients. There are methods for measuring vascular 
aging such as instrumental measurements and molecular methods. The best way to 
measure vascular aging is a combination of methods to determine the mechanism and 
cause of vascular aging. In this review article, we first summarize the various mechanisms 
of vascular aging and then discuss the effect of different disease on vascular aging. 
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Introduction 

    It is believed that the age of the arteries determines 
the age of the person. This idea originated from an 
epidemiologic study that shows that vascular diseases 
are closely related to age (1, 2). In vascular aging, 
vessels become thicker and firmer, thus the ability to 
reduce the shape and function of the vessel in changing 
tissue demand (2). In older healthy people, these 
changes are spread by lumen dilation, increased arterial 
stiffness, endothelial dysfunction, and thickening of the 
intima (3). Of all the chronic diseases, cardiovascular 
disease remains the leading cause of complications and 
mortality in the elderly, so understanding the basic 
mechanism of vascular aging is essential. Although 
aging changes in vascular function are considered in a 
set of diseases (4), changes in vascular function can be 
slow that accelerate this point. Therefore, it is 
important to understand how aging and other 
pathophysiological conditions affect the interaction 
between the different diseases and the arterial network 
(5). In this review, the study describes the relationship 
between various diseases and vascular aging are briefly 
described. 

Cellular and molecular mechanism in vascular aging 

    Developing an accurate understanding of cellular 
and molecular mechanisms is necessary to develop 
new treatment methods to prevent vascular aging as 
well as age-dependent vascular complications that 

occur due to old age. The pathophysiological roles of 
aging depend on cellular and molecular mechanisms 
such as mitochondrial dysfunction, oxidative stress, 
molecular stress resistance, genomic instability, mild 
chronic inflammation, cellular aging, loss of protein 
homeostasis, epigenetic changes, complications in 
nutrient sensing system regulation, and stem cell 
dysfunction (6). The pathogenesis of macro vascular 
and micro vascular age-related diseases must be 
investigated through basic studies before expanding the 
study to vaster dimensions (6, 7). The following has 
paid an attempt to present a comprehensive and unified 
study of cellular and molecular mechanisms involved 
in vascular aging (cellular and molecular mechanism) 
(3, 4, 6, 7, 4). (Table 1) 

How can determine vascular aging? 

    In recent years, many manufacturers of modern 
devices that have directly or indirectly estimated 
vascular stiffness have developed models to calculate 
vascular age based on stiffness estimation. Standard 
gold methods such as Complior and SphygmoCor have 
been expensive to directly assess vascular stiffness, 
although they are becoming less common over time 
(8). Other devices have been marketed by various 
indirect measurement methods (9). Further attention to 
arterial stiffness and vascular aging, not only among 
physicians but also among patients has led to the 
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creation of different methods for calculating the age of 
arteries based on algorithms that are the underlying 
factors of age, sex, index (10). Body mass, blood 
pressure, and smoking are measured by a certain 

measure of aortic stiffness or central hemodynamics. 
Finally, a person's vascular age can be indicated 
concerning the age of at least one approximation (11, 
12). 

Table 1. Cellular and molecular mechanism 

Mechanism Factors involved Mechanism Treatment 
Molecular and cellular 
mechanisms of vascular aging 

NO 
ROS-MMP 

Enhanced vasoconstriction and 
dysregulation of tissue perfusion 
the development of cerebral micro 
hemorrhages 

Drugs with effect on 
preventing large artery 
stiffening, cerebral micro 
hemorrhages, and aortic 
aneurysms 

Role of oxidative and nitrative 
stress 

ROS 
ATP 
Glutathione 

The decline in cellular glutathione 
content, down-regulation of p66Shc, 
and/or impaired Nrf2-mediated 
antioxidant defense responses 

Treatment with the 
mitochondrial antioxidant 
MitoQ60, resveratrol 
The potent mitochondria-
targeted antioxidative 
tetrapeptide SS-31 

Vascular inflammation in 
aging 

IL-6, IL-1β, TNFα 
adhesion molecules 
iNOS  

impairs cellular metabolism, increases 
apoptosis, and contributes to the 
pathogenesis of vascular diseases 

Inhibition of NF-κB  

Maladaptation to molecular 
stresses 

ROS activation of Nrf2-driven antioxidant 
defense pathways 

Pharmacological activation of 
Nrf2 
 anti-aging vasoprotective 

Loss of proteostasis Chaperones  
Ubiquitin-proteasome 
lysosome- 

mitochondrial dysfunction and the 
resulting decline in cellular ATP 
content likely also impairs the 
function of ATP-dependent 
chaperones 

Pharmacological interventions 
that stimulate autophagy (e.g. 
trehalose or  

Role of genomic instability Factors in genomic 
instability  

increased vascular stiffness, increased 
presence of senescence cells, and 
hypertension 

DNA repair system 

Cellular senescence Endogenous and 
exogenous stressors  

pro-inflammatory secretome changes Pharmacological treatment 
with senolytic agents 

Increased apoptosis and 
necroptosis 

NO 
TNFα  
Mitochondrial oxidative 
stress 

Increased apoptotic cell death likely 
contributes to aging-induced 
microvascular rarefaction and the 
pathogenesis of atherosclerotic 
vascular diseases and aneurysm 
formation 

Inhibition of necroptosis either 
genetically, 
pharmacologically, or by 
dietary means 

Epigenetic alterations Epigenetic factors Alterations in DNA methylation 
patterns, posttranslational 
modification of histones, microRNAs, 
long noncoding RNAs, and chromatin 
remodeling 

DNA methyltransferases, 
histone acetylases and 
deacetylases, methylases, and 
demethylases 

Deregulated nutrient-sensing 
pathways 

Cellular energy sensing  Growth signals, including mTOR 
(mechanistic/mammalian target of 
rapamycin) signaling, adenosine 
monophosphate protein kinase 
(AMPK), and sirtuin 

mTOR inhibition promoting 
endothelium-mediated, NO-
dependent vasodilation 

Renin-angiotensin system Angiotensin converting 
enzyme (ACE) 

Promotes aging-like changes in the 
vascular phenotype by vascular 
smooth muscle cells 

ACE inhibitors 

ECM remodeling ECM  ECM components declines alter 
vascular mechano-transduction  

Reconstruction of extracellular 
matrix 

Pro-gerontic and anti-gerontic 
circulating factors 

Vasoprotective 
endocrine factors 

The decline in circulating levels of 
GH, IGF-1 
Regulate multiple aspects of 
endothelium-dependent vasodilation 
Autoregulation of blood flow 
Vascular structural remodeling 

Caloric restriction 
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The connection between disease and vascular aging 

    High blood pressure and aging have similar 
mechanisms of vascular function. Structural and 
functional changes in small blood vessels occur 
during normal, accelerated aging, possibly due to high 
blood pressure (13, 14). Mutual discussion may take 
place between large and small changes in the arteries, 
interacting with the transmission of pressure and 
reflection waves, exaggerating heart, brain, and 
kidney damage, and ultimately leading to 
cardiovascular and renal complications. Vascular 
aging, defined as age-related changes in blood vessels, 
depends on its blood supply for structural and 
functional integration. As a result, this effect is not 
limited to one organ and can be involved in wide-
ranging tissues and diseases (12). 

Vascular aging in diseases associated with high blood 
pressure 

    Blood outflow from the aorta results in an onward 
pressure in arteries (15-17). The pressure wave in 
each arterial wall cessation moves back toward the 
heart due to geometric symmetry and vascular 
elasticity (18). Young people's cardiovascular systems 
have been designed to maximize the interaction 
between the aorta and the reflected wave and, 
subsequently, increase coronary artery perfusion 
without increasing the systolic load young people's 
cardiovascular systems (19). Increased reflected 
waves from the environment and aorta stiffness are 
the main hemodynamic mechanisms in charge of 
blood pressure increase in central arteries (20). Artery 
stiffness disables the vessels to absorb bloodstream 
energy. High central arterial blood pressure results in 
the development of left ventricular hypertrophy that, 
in turn, leads to ventricular relaxation impairment that 
brings about diastolic heart failure (21). High central 
arterial blood pressure and arterial stiffness could also 
result in coronary artery perfusion changes that lead to 
infarction and myocardial ischemia. High central 
arterial blood damages the structure of collagen and 
elastin in artery walls that brings about early artery 
aging (22). Besides, arterial stiffness and, 
subsequently, decreased shear stress in vessels due to 
collagen and elastin disruption lead to lower nitric 
oxide production and vasoconstrictor limitation that 
ultimately results in vascular aging. Diseases 
associated with high blood pressure such as stroke, 
obesity, and Lupus Erythematosus can leave the same 
impact on vascular age (23, 24). 

Vascular aging in inflammatory diseases 

    Studies show that chronic, low-grade inflammation 
is characteristic of the aging process (25). Activation 
of inflammatory processes plays a major role in a 
wide range of vascular damage, from vascular 
dysfunction and organ dysfunction such as 
Alzheimer's disease (26). Previous studies have shown 
that there is a proinflammatory change in the gene 

expression profile of vascular smooth muscle of 
vascular endothelial cells (27). Induction of 
inflammatory cytokines such as interleukin-6, IL-1β, 
and TNF-α, adhesion molecules, inducible iNOS 
synthase and other proinflammatory mediators are 
involved (28). The proinflammatory environment 
caused by a number of diseases, such as Alzheimer's 
disease in the vascular wall, impairs vascular function 
and disrupts cellular metabolism, thereby increasing 
apoptosis and contributing to the pathogenesis of 
vascular disease (29). 

Vascular aging in diseases associated with sex 
hormones 

    All around the world, cardiovascular diseases are 
less common among women until they become 
middle-aged, but the prevalence of such diseases are 
similar across both genders in their sixth and seventh 
decade of life (30). The low prevalence of 
cardiovascular diseases in females before menopause 
is associated with estradiol a sex hormone that 
decreases during menopause. The impact of sex 
hormones on adults' vascular aging might help to 
explain some reasons for the gender-dependent 
differences in cardiovascular diseases associated with 
age (31). Studies have indicated that testosterone and 
estradiol dysfunction balance endothelial function that 
is a vascular aging biomarker (32, 35). The vascular 
endothelium is a layer of cells that acts as a protective 
layer for maintaining the vessel wall integrity (36). 
One of the significant features of age-dependent 
endothelial dysfunction is endothelial-dependent 
vasodilation decline (37). Gender-related differences 
have been reported in the extent of endothelial-
dependent vasodilation decrease. Endothelial-
dependent artery dilatation is maintained until the 
fourth decade of life in men, while it lasts for one 
more decade (i.e. the fifth decade of life) in women; 
but after their fifth life decade, it decreases more 
rapidly in women compared to men (38). No age-
related impairing impact has been observed on the 
function of vascular smooth muscle cells; however, 
observations indicated endothelial dysfunction in 
postmenopausal and premenopausal men and women. 
Since the age in which women indicate endothelial 
dysfunction corresponds to the common menopausal 
age, it has been revealed that estrogen protects 
endothelial cells in premenopausal women and is later 
eliminated due to menopause. Endothelial function 
declines gradually throughout the stages of 
menopause. Contrary to women whose endogenous 
estradiol level undergoes abrupt decline due to 
menopause, a corresponding testosterone decline is 
not observed in men; still, the level of complete and 
available testosterone declines with age (39-42). 
Population-oriented studies focused on men with 
cardiovascular disease risk factors have indicated that 
low serum testosterone is associated with reduced 
endothelial function; however, testosterone 
deficiency’s role in age-related endothelial function 
decline is less evident in the absence of disease (43, 
35). 

101 Elderly Health Journal 2021; 7(2): 99-106. 

 [
 D

O
I:

 1
0.

18
50

2/
eh

j.v
7i

2.
81

24
 ]

 
 [

 D
O

R
: 2

0.
10

01
.1

.2
42

36
17

9.
20

21
.7

.2
.3

.0
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 e
hj

.s
su

.a
c.

ir
 o

n 
20

25
-1

0-
29

 ]
 

                               3 / 8

http://dx.doi.org/10.18502/ehj.v7i2.8124
https://dor.isc.ac/dor/20.1001.1.24236179.2021.7.2.3.0
https://ehj.ssu.ac.ir/article-1-204-en.html


Saberianpour 

Hutchinson-Gilford Progeria Syndrome 

    Hutchinson-Gilford Progeria Syndrome (HGPS) 
is a very rare scattered genetic disease that includes 
an inappropriate combination of the LMNA gene 
(44). Cardiovascular disease is the basis of 
significant complications and mortality (45). 
Animal and human studies have supported double 
ultrasound as a useful tool for diagnosing tissue 
pathology with a pre-regulated extracellular matrix 
by increasing echogenicity. Further, in the 
laboratory, it is studied during the echogenic 
association with tissue pathology in rats. However, 
arterial intima-media density is associated with 
cardiovascular risk and echogenicity of carotenoid 
plaque in older adults, and a significant amount of 
adventure abnormalities have been observed. HGPS 
provides a unique opportunity to isolate a subset of 
factors affecting cardiovascular disease in the 
elderly population (46). Molecular mechanisms that 
lead to vascular dysfunction in HGPS may also 
play a role in vascular aging. The phenotypic and 
vascular changes observed in HGPS are 
dramatically similar to those seen with aging, 
including increased aging, increased altered 
mechanical transmission, and stem cell burnout 
(47). 

Diabetes 

    Diabetes and the aging process increase the risk 
of cardiovascular disease (CVD). Diabetes is a 
major risk factor for CVD (48). Like aging, 
diabetes affects vascular function. Vascular 
endothelial vascular dysfunction is a recurrent 
finding in the arteries of diabetic animals and 
patients in both intracranial and extracorporeal 
conditions (49). Besides, endothelial dysfunction 
predicts CVD in diabetic patients. Even in young 
diabetic patients, a decrease in urothelial, flow-
dependent, and dilatation leads to early 
atherosclerotic changes. Endothelial dysfunction 
appears to be the early stage in the development of 
vascular complications in patients with type 1 or 
type 2 diabetes (50). Significantly, some 
comparative studies have shown more endothelial 
dysfunction in people with type 2 diabetes. This 
finding could be related to the destructive effects of 
insulin resistance on endothelial function. 
Hyperglycemia and insulin resistance can 
simultaneously jeopardize endothelial function in 
type 2 diabetic patients (51-54). Insulin resistance, 
which is estimated by evaluating the homeostasis 
model, is independently associated with the next 
symptomatic vascular disease in the general option. 
Although endothelial vasodilation is a feature of 
diabetic vascular function, Arterial stiffness is more 
common in diabetics, especially in the elderly. 
Besides, pulse wave velocity has been increased in 
type 2 diabetic patients. This fact due to arterial 
stiffness is associated with diabetes as another 
symptom of vascular function. The pulse rate in 
diabetic patients increases with vascular aging (55). 

Systemic Lupus Erythematosus 

    The potent predictor of cardiovascular events is the 
same as that seen in patients with Systemic Lupus 
Erythematosus (SLE). SLE has a detrimental effect on 
vascular aging due to high blood pressure. This effect 
of SLE is most often associated with chronic 
inflammation. Numerous studies have evaluated 
arterial stiffness in patients with SLE (56). Aortic 
stiffness is one of the important indicators of early 
vascular aging (EVA). EVA and subclinical 
atherosclerosis are measured by measuring aortic 
pulse wave velocity and intima-media thickness of 
carotid . Patients with SLE often have atherosclerotic 
complications. The role of LDL composition in 
strengthening premature vascular aging in SLE 
patients, increasing plasma L5 levels, not the overall 
concentration of LDL, it may exacerbate premature 
vascular aging in SLE patients and lead to premature 
atherosclerosis (57-59). 

Chronic kidney disease 

    Chronic Kidney Disease (CKD) is a clinical model 
of premature aging associated with cardiovascular 
disease, persistent uremic inflammation, loss of 
osteoporosis, and weakness. EVA accelerated by 
vascular calcification  is a characteristic of aging as 
well as a strong predictor of the complications and 
mortality of artery vascular in patients with chronic 
kidney disease (60). Damage-induced cellular aging 
may be largely related to such pathological conditions 
of premature aging. Evidence now suggests that 
signaling related to nuclear factor 2 and red blood 
cells 2 (NRF2) and vitamin K plays an important role 
in counteracting oxidative stress, DNA damage, 
aging, and inflammation, thus activating NRF2 and 
Vitamin K supplementation may provide a new 
therapeutic goal to prevent premature vascular aging 
in patients with chronic renal inflammation (61, 62). 

Thalassemia major 

    Patients with thalassemia major show an increase in 
the prevalence of vascular complications. The 
symptoms of this disease are caused by inflammatory 
reactions that cause vascular damage and 
atherogenesis. Low-level inflammation and a 
prothrombotic condition may neutralize atrophic 
protective mechanisms, accelerate vascular aging, and 
prove the relatively high prevalence of vascular 
complications in these patients (63, 64). 

Alzheimer’s disease 

    Vascular aging may be exacerbated by Alzheimer's 
pathology, thus contributed to vascular dysfunction in 
Alzheimer. These vascular changes include functional 
and structural changes throughout the brain system, 
from the hardening of the great arteries to small 
vascular disease (65, 66). These changes, along with 
the damaging effects of the amyloid-beta, reduce brain 
perfusion and impair the ability of cerebral 
circulation. Also, there is evidence that vascular 
changes outside the brain may be involved in 
Alzheimer (67). Systemic hypertension and 
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atherosclerosis, along with the hardening of the large 
arteries and prognosis in Alzheimer, may cause 
damage to cerebral arteries. Plasma amyloid beta 
levels increase during clinical Alzheimer and decrease 
as the disease progresses. Elevated plasma Aβ levels 
in the early stages of Alzheimer may affect the 
cardiovascular system on a large scale and potentially 
affect the course of the disease and its clinical 
manifestations (68). 

Stroke 

    Survivors of ischemic stroke, even at a young age, 
have a risk for cardiovascular disease and mortality, 
indicating that premature arterial aging is common in 
these patients after a stroke (69). Eighteen percent of 
patients recovering from a stroke have shown vascular 
disorders in a prospective study. These symptoms are 
especially related to high blood pressure. Adjustable 
cardiovascular risk factors in patients with young and 
middle-aged stroke emphasize that by implementing 
effective secondary prevention, there is ample 
potential to improve prognosis in these patients (70). 

Obese 

    In obese patients with different reasons such as 
gene-dependent or reduction in circulating growth 
hormone and IGF-1 insulin growth level, it is 
significantly effective in vascular dysfunction and 
vascular aging associated with impaired cellular 
oxidative stress resistance pathways (71). Obesity in 
the elderly is accompanied by an alarming rate, and 
there is evidence that older people are more 
vulnerable to the devastating cardiovascular effects of 
obesity than young people. A high-fat diet led to an 
increase in similar relative weight and increased body 
fat in mice. Mice fed with a high-fat showed a relative 
increase in blood glucose levels, low insulin, and 
glucose tolerance compared with control mice (41). 
Analysis of serum cytokine levels showed that chronic 
IGF-1 deficiency exacerbates inflammation. GH / 
IGF-1 deficiency also impairs endothelial function 
due to a high-fat diet, oxidative stress, and 
inflammatory markers (tumor necrosis factor-α, 
ICAM-1) in aortic mice that can lead to aging in 
arteries. The results in the past studies, based on 
available clinical and empirical evidence, show that 
GH / IGF-1 deficiency makes the cardiovascular 
system more vulnerable to the harmful effects 
of obesity and can accelerate vascular aging (72). 

Conclusion 

    Vascular aging is a process that can occur at any 
age and under different physiological conditions. One 
of the most important of these conditions is the 
occurrence of various diseases in the occurrence of 
vascular aging. Vascular aging can improve the 
condition and even death of various diseases. In 
particular, it can affect cardiovascular disease. The 
effects of the disease can be greatly reduced, by 
examining the predisposing factors for vascular aging 
in these patients. 
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